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Abstract

We report on work carried out to develop a 3-D coupled Finite Volume/BEM-based temperature

forward/flux back (TFFB) coupling algorithm to solve the conjugate heat transfer (CHT) which

arises naturally in analysis of systems exposed to a convective environment. Here, heat

conduction within a structure is coupled to heat transfer to the external fluid which is convecting

heat into or out of the solid structure. There are two basic approaches to solving coupled fluid-

structural systems. The first is a direct coupling where the solution of the different fields is

solved simultaneously in one large set of equations. The second approach is a loose coupling

strategy where each set of field equations is solved to provide boundary conditions for the other.

The equations are solved in turn until an iterated convergence criterion is met at the fluid-solid

interface. The loose coupling strategy is particularly attractive when coupling auxiliary field

equations to computational fluid dynamics codes. We adopt the latter method in which the BEM

is used to solve heat conduction inside a structure which is exposed to a convective field which

in turn is resolved by solving the NASA Glenn compressible Navier-Stokes finite volume code

Glenn-HT. The BEM code features constant and bi-linear discontinuous elements and an ILU-

preconditioned GMRES iterative solver for the resulting non-symmetric algebraic set arising in

the conduction solution. Interface of flux and temperature is enforced at the solid/fluid interface,

and a radial-basis function scheme is used to interpolated information between the CFD and

BEM surface girds. Additionally, relaxation is implemented in passing the fluxes from the

condution solution to the fluid solution. Results from a simple test example are reported.



1 Introduction

As field solvers have matured, coupled field analysis has received much attention in an effort to

obtain computational models ever-more faithful to the physics being modeled, see for instance

[1]. The coupled field problem which we address is the conjugate heat transfer (CHT) problem

arising commonly in practice: time dependent or time independent convective heat transfer over

coupled to conduction heat transfer within a solid body, see Fig. (1). Examples of CHT include

analysis of automotive engine blocks, fuel ejectors, cooled turbine blade/vanes, nozzle or

combustor walls, or thermal protection system for re-entry vehicles. Applications of interest are

then any thermal system in which multi-mode convective/conduction heat transfer is of particular

importance to thermal design, and thus CHT arises naturally in most instances where external

and internal temperature fields are coupled.

u T

Figure 1: CHT problem: external convective heat transfer coupled to heat conduction

within the solid.

However, conjugacy is often ignored in numerical simulations. For instance, in analysis of

turbomachinery, separate flow and thermal analyses are typically performed, and, a constant wall

temperature or heat flux boundary condition is typically imposed for the flow solver. Convective

heat transfer coefficients are then obtained from the flow solution, and these are provided to the

conduction solver to determine the temperature field and eventually to perform further thermal

stress analysis. The shortcomings of this approach which neglects the effects of the wall

temperature distribution on the development of the thermal boundary layer are overcome by a

CHT analysis in which the coupled nature of the field problem is explicitly taken into account in

the analysis.

There are two basic approaches to solving coupled field problems. In the first approach, a direct

coupling is implemented in which different fields are solved simultaneously in one large set of

equations. Direct coupling is mostly applicable for problems where time accuracy is critical, for

instance, in aero-elasticity applications where the time scale of the fluid motion is on the same

order as the structural modal frequency. However, this approach suffers from a major

disadvantage due to the mismatch in the structure of the coefficient matrices arising from

BEM, FEM and/or FVM solvers. That is, given the fully populated nature of the BEM



coefficientmatrix,thedirectcouplingapproachwouldseverelydegradenumericalefficiencyof

the solution by directly incorporating the fully populated BEM equations into the sparsely banded

FEM or FVM equations. A second approach which may be followed is a loose coupling strategy

where each set of field equations is solved separately to produce boundary conditions for the

other. The equations are solved in turn until an iterated convergence criterion, namely continuity

of temperature and heat flux, is met at the fluid-solid interface. The loose coupling strategy is

particularly attractive when coupling auxiliary field equations to computational fluid dynamics

codes as the structure of neither solver interferes in the solution process.

There are several algorithmic approaches which can be taken to solve the coupled field problems.

Most commonly used methods are based on either finite elements (FEM), finite volume methods

(FVM), or a combination of these two field solvers. Examples of such loosely coupled

approaches applied to a variety of CHT problems ranging from engine block models to

turbomachinery can be found in Comini et al. [2], Shyy and Burke [3], Patankar [4], Kao and

Liou [5], Hahn et al. [6], Bohn et al. [7], and in Tayla et al. [8] where multi-disciplinary

optimization is considered for CHT modeled turbine airfoil designs. Hassan et al. [9] develop a

conjugate algorithm which loosely couples a FVM-based Hypersonic CFD code to an FEM heat

conduction solver in an effort to predict ablation profiles in hypersonic re-entry vehicles. Here,

the structured grid of the flow solver is interfaced with the un-structured grid of heat conduction

solvers in a quasi-transient CHT solution tracing the re-entry vehicle trajectory. Issues in loosely

coupled analysis of the elastic response of solid structures perturbed by external flowfields

arising in aero-elastic problems can be found in Brown [10]. In either case, the coupled field

solution requires complete meshing of both fluid and solid regions while enforcing solid/fluid

interface continuity of fluxes and temperatures, in the case of CHT analysis, or displacement and

traction, in the case of aero-elasticity analysis.

A different approach taken by Li and Kassab [I 1,12] and Ye et al. [12] who develop a HCT

algorithm which avoids meshing of the solid region to resolve the heat conduction problem. In

particular, the method couples the boundary element method (BEM) to an FEM Navier-Stokes

solver to solve a steady state compressible subsonic CHT problem over cooled and uncooled

turbine blades. Due to the boundary-only discretization nature of the BEM, the onerous task of

grid generation within intricate solid regions is avoided. Here, the boundary discretization

utilized to generate the computational grid for the external flow-field provides the boundary

discretization required for the boundary element method. In cases where the solid is multiply-

connected, such as a cooled turbine blade, the interior boundary surfaces must also be

discretized; however, this poses little additional effort. Moreover, in addition to eliminating

meshing the solid region, this BEM/FVM method offers an additional advantage in solving CHT

problems which arises from the fact that nodal unknowns which appear in the BEM are the



surfacetemperaturesandheatfluxes.Consequently,solid/fluidinterfacialheatfluxeswhichare
requiredto enforcecontinuityin CHTproblemsarenaturallyprovidedbytheBEMconduction
analysis.This is incontrasttothedomainmeshingmethodssuchasFVMandFEMwhereheat
fluxesarecomputedin a post-processingstageby numericaldifferentiation.He et al. [14,15]
adoptedthis approachin furtherstudiesof CHTin incompressibleflow in ductssubjectedto
constantwall temperatureand constantheat flux boundaryconditions.Kontinos[16] also
adoptedtheBEM/FVMcouplingalgorithmto solvetheCHTovermetallicthermalprotection
panelsattheleadingedgeof theX-33inaMach15hypersonicflow regime.RahaimandKassab
[17]andRahaimetal. [18]adoptaBEM/FVMstrategytosolvetime-accurateCHT problems for

supersonic compressible flow, and they present experimental validation of this CHT solver. In

their studies, the dual reciprocity BEM [19] is used to for transient heat conduction, while a cell-

centered FVM is chosen to resolve the compressible turbulent Navier-Stokes equations.

We now present work carried out under this want which extends the loosely coupled BEM/FVM

approach to solving CHT problems in steady state for 3-D problems. Here, we couple a 3-D

BEM conduction solver with the NASA Glenn multi-block FVM Navier-Stokes convective heat

transfer code, Glenn-HT. This density based FVM code is a robust and well-proven code

developed specifically for fluid-flow and heat transfer analysis in turbomachinery applications.

The methodology adopted in this work is given as well as the information passing process.

Results are presented for a test-case configuration to be used in future laboratory experiments

which will serve as experimental validation of the CHT solver.

2 Governing Equations

The governing equations for the mixed field problem under consideration are reviewed. The

CHT problems arising in turbomachinery involves external flow fields that are generally

compressible and turbulent, and these are governed by the compressible Navier-Stokes equations

supplemented by a turbulence model. Heat transfer within the blade is governed by the heat

conduction equation, and linear as well as non-linear options are considered. However, fluid

flows within internal structures to the blade, such as film cooling holes and channels, are usually

low-speed and incompressible. Consequently, density-based compressible codes are not directly

applicable to modeling such flows, unless low Mach number pre-conditioning is implemented,

see Turkel [25,26]. It is also noted that the Glenn-HT code is specialized to turbomachinery

applications for which air is the working fluid and which is modeled as an ideal gas.

2.1 The Flow Field

The governing equations for the external fluid flow and heat transfer are the compressible

Navier-Stokes equations, which describe the conservation of mass, momentum and energy. These

can be written in integral form as



r _ (1)

where fl denotes the volume, F denotes the surface bounded by the volume fl, and _, is the

outward-drawn normal. The conserved variables are contained in the vector _: -- (p, pu, pv,

pw, pe, pk, pw) , where, p, u, v, w, e, k,co are the density, the velocity components in x-, y-,

and z-directions, and the specific total energy, k and w are the kinetic energy of turbulent

fluctuations and the specific dissipation rate of the two equation k-w Wilcox turbulence model

[23, 24] is adopted in Glenn-HT. The vectors ff and 2 are convective and diffusive fluxes

respectively, ff is a vector containing all terms arising from the use of a non-inertial reference

frame as well as production and dissipation of turbulent quantities. The fluid is modeled as an

ideal gas. A rotating frame of reference can be adopted for rotating flow studies. The effective

viscosity is given by

# = #l + #t (2)

where Pt = pk/w. The ther_nal conductivity of the fluid is then computed by a Prandtl number

analogy where

v i + (3)

and Pr is the Prandtl number and 7 is the specific heat ratio. The subscribes t and t refers to

laminar and turbulent values respectively.

2.2 The Heat Conduction Field

In the CHT model, the NS equations are solved to steady state by a time marching scheme. As

physically realistic time-dependent solutions are not sought, a quasi-steady heat conduction

analysis using the BEM is performed at a given time level. As such, only steady-state heat

conduction is considered. The governing equation is

V. [k(Ts)VTs] = 0 (4)

where, T_ denotes the temperature of the solid, and k8 is the thermal conductivity of the solid

material. If the thermal conductivity is taken as constant, then the above reduces to the following

equation for the temperature

kV2T = 0 (5)

When the thermal conductivity variation with temperature is an important concern, the

nonlinearity of the heat conduction equation can readily be removed by introducing the classical

Kirchhofftransform, U(T), which is defined as



- _ (6)
o

where To is the reference temperature and ko is the reference thermal conductivity. The

transform and its inverse are readily evaluated, either analytically or numerically, and the heat

conduction equation transforms to a Laplace equation for the transform parameter U(T), that is

the nonlinear heat conduction problem transforms to

koV2U = 0 (7)

and the boundary conditions of the first and second kind transform linearly as

OU 07s
U = U(Ts) and kO-O-_ - ks On (8)

Thus, the nonlinear problem in Tsubjected to any combination of 1st or 2nd kind boundary

conditions transforms to a linear problem in the transform parameter U. The heat conduction

equation thus reduces to the Laplace equation in any case, and this equation is readily solved by

the BEM.

In the conjugate problem, continuity of temperature and heat flux at the blade surface, F,

must be satisfied:

T: = 7s (9)

Ogf _ _ ks 07s
k/On

Here, TI is the temperature computed from the N-S solution, Ts is the temperature within the

solid which is computed from the BEM solution, and O/On denotes the normal derivative. Both

first kind and second kind boundary conditions transform linearly in the case of temperature

dependent conductivity. As will be explained later, in such a case, the fluid temperature is used to

evaluate the Kirchhoff transform and this is used a boundary condition of the first kind for the

BEM conduction solution in the solid. Subsequently the computed heat flux, in terms of U, is

scaled to provide the heat flux which is in turn used as an input boundary condition for the flow-

field.

3 Field Solver Solution Algorithms

A brief description of the Glenn-HT code is given in this section. Details of the code and its

verification can be found in [21,22]. The heat conduction equation is solved using BEM, and

details are provided for this conduction solver.

3.1 Navier-Stokes Solver

A cell-centered FVM is used to discretize the NS equations. Eq. (1) is integrated over a

hexahedral computational cell with the nodal unknowns located at the cell center (i, j, k). The



convectivefluxvectorisdiscretizedbyacentraldifferencesupplementedbyartificialdissipation
asdescribedin Jamesonet al. [27].Theartificialdissipationis ablendof first andthirdorder
differenceswith thethirdordertermactiveeverywhereexceptatshocksandlocationsof strong
pressuregradients.Theviscoustermsareevaluatedusingcentraldifferences.Theresultingfinite
volumeequationscanbewrittenas

dD',..,i,j,k - d =S (I0)
Yio'k d-----_ -+- q i,j,k ,'.., i,j,k i,j,k

where I_'i,j,k is the cell-volume averaged vector of conserved variables, q i0,kand d i,j,kare the

net flux and dissipation for the finite volume obtained by surface integration of Eq. (I), ands i,j,k

is the net finite source term. The above is solved using a time marching scheme based on a fourth

order explicit Runge-Kutta time stepping algorithm. The steady-state solution is sought by

marching in time until the dependent variables reach their steady-state values, and, as such,

intermediate temporal solutions are not physically meaningful. In this mode of solving the

steady-state problem, time-marching can be viewed as a relaxation scheme, and local time-

stepping and implicit residual smoothing are used to accelerate convergence. A multi-grid option

is available in the code, although it was not used in the results reported herein.

3.2 Heat Conduction Boundary Element Solution

The heat conduction equation reduces to the same governing Laplace equation in the temperature

or the Kirchhoff transform. In the boundary element method this governing partial differential

equation is converted into a boundary integral equation (BIE), see[28-31], as

C(_) T(_)+JsT(x)q*(x, _)dS(x)=jsq(x)T*(x,_)dS(x) (11)

where S(x) is the surface bounding the domain of interest, { is the source point, x is the field

point, q(x) = - kOT/On is the heat flux, T* (x, _) is the so-called fundamental solution, and

q*(x, _) is its normal derivative with O/On denoting the normal derivative with respect to the

outward-drawn normal. The fundamental solution (or Green free space solution) is the response

of the adjoint governing differential operator at any field point x due to a perturbation of a Dirac

delta function acting at the source point _. In our case, since the steady state heat conduction

equation is self-adjoint, we have

kV2T*(x, ¢) : - 6(.r., ¢) (12)

Solution to this equation can be found by several means, see for instance Liggett and Liu [32],

Morse and Feschbach [33], and Kellog [34], as



1
T*(x,_) - 27rktnr(x,_) in 2-D (13)

1
- in 3-D

4_ r(z, 4)

where r(x, _) is the Euclidean distance from the source point _. The free term C(_) can be shown

analytically to be

fs or*(x,_)c(_) = - k dS(_) (14)
(z) On

Moreover, introducing the definition of the fundamental solution in the above, it can be readily

be determined that C(_) is the internal angle (in degrees in 2-D and in steradians in 3-D)

subtended at source point divided by 2_-in 2-D and by 47r in 3-D when the source point _ is on

the boundary and takes on a value of one when the source point _- is at the interior. Consequently,

the free term takes on values 1 > C(_) > 0.

In the BEM, the BIE is discretized using two levels of discretization:

1. the surface 5' is discretized into a series ore = 1,2...N elements. This is traditionally

accomplished using polynomial interpolation, bilinear and quadratic being the most

common. In general,

N

S = _AS" (15)

and on each surface element 5"e the geometry is discretized using local shape functions

N_. (r/, () in terms a homogenous coordinates (77,() which each take on values between

[- 1, 1] as

NCE

_°(,, () = _ X_(,, ()_.
k=l

NGE

v_(,,() = _ X_(,, ()yk
k=l

NGE

_°(,, () = X_N_(,, ()z_
k=l

(16)

Here, (xk, Yk, z_) denote the location of the k = 1, 2...NGE boundary nodes used to

define the element geometry.

2. the distribution of the temperature and heat flux is modeled on the surface. This is

usually accomplished using polynomial interpoaltion as well. Common discretizations



include:constant(wherethemeanvalueof T and q) are taken on an element surface,

blinear, or bi-quadratic. In general,

NPE

= i 7(,7, (17)
j=l

NPE

qe( , = }2 N;(,7,
j=l

It is noted that the order ofdiscretization of the temperature and heat flux need not be

the same as that used for the geometry, leading to sub-parametric (lower order than that

used for the geometry), iso-parametric (lower order than that used for the geometry),

and super-parametric (lower order than that used for the geometry) discretizations.

Moreover, the temperature and heat flux are discretized using j = 1, 2, ...NPE

discrete nodal values whose location within the element e can be chosen to

(a) coincide with the location of the geometric nodes: continuous elements.

(b) be located offset from the geometric nodes: discontinuous elements.

We choose to employ bi-linear discontinuous elements as they provide high levels of accuracy in

computed heat flux values especially at sharp comers regions where first kind boundary

conditions are imposed without resorting to special treatment of comer points required by

continuous elements[30]. Such comer regions are often encountered in industrial problems and

first kind boundary conditions are imposed there in the CHT algorithm to be shortly described.

Moreover, the use of discontiuous elements throughout the BEM model eliminates much of tyhe

overhead associated with continuous elements, in particular, there is no need to generate, store,

or access a connectivity matrix when using discontinuous elements. Details of the discretization

employed in the BEM code are provided in the Appendix.

Following standard BEM discretization the BIE leads to the following

N NPE N NPE

e=l j=l So e=l j=l

(18)

The surface integrals in the above equation depend purely on the local geometry of the element

and the location ofthe source point _. These are evaluated numerically using Gauss quadratures.

Upon collocation of the above at every boundary node where the temperature and heat flux are

define, the following algebraic form is obtained:



[H](T_}=[G]{q._} (19)

Heretheinfluencematrices[H] and[G] areevaluatednumericallyusingquadratures.Detailsof
thenumericsareprovidedin theAppendix.Thesearesolvedsubjectto eitherof thefollowing
boundaryconditions:

(a)attheexternalboundingwail: Tslre = 7I

(b) at internal cooling hole surfaces: - k_ _o,_ ro = h[ T_ - To_ ][ r0

(20)

(21)

Here, T is the wall temperature computed from the N-S solution, T_ is the wall temperature

computed from the BEM conduction solution, the external boundary is denoted by Fc, while Fc

denotes the convective internal cooling hole boundaries. At this point the Glenn-HT code does

not have low Mach number capabilities. As such, modeling of convection in the cooling passages

must be accomplished using correlations and not simulated using the NS solver (although this is

perfectly possible and would be consistent with the CHT philosophy with proper extensions of

the NS solver). In addition, in certain cases, a full CHT model is not practical in the design stage.

For instance, modeling of cooling passages in a turbine blade with intricate cooling schemes such

as jet impingement cooling or turbulence enhancing ribs pose a serious computational challenge,

and these are often better modeled using correlation equations. Consequently, a partial CHT

model can be carried out with internal bounding walls modelled using the standard convective

boundary condition at internal cooling hole surfaces.

The advantage of the BEM formulation over finite difference or finite element formulations is

that no interior mesh is generated and the surface heat flux is computed in the solution. A

GMRES iterative solver with an ILU pre-conditioning is used to solve the BEM equations.

3.3 CHT Algorithm

The Navier-Stokes equations for the external fluid flow and the heat conduction equation for heat

conduction within the solid are interactively solved to steady state through a time-marching

algorithm. The surface temperature obtained from the solution of the Navier-Stokes equations is

used as the boundary condition of the boundary element method for the calculation of heat flux

through the solid surface. This heat flux is in turn used as a boundary condition for the Navier-

Stokes equations in the next time step. This procedure is repeated until a steady-state solution is

obtained. In practice, the BEM is solved every few cycles of the FVM, say every two hundred, to

update the boundary conditions, as intermediate solutions are not physical in this scheme. This is

referred to as the temperature forward/flux back (TFFB) coupling algorithm as outlined below:



• FVMNavier-Stokessolver:

1. Beginswith initialadiabaticboundaryconditionatsolidsurface.
2. SolvescompressibleNSfor fluidregion.
3. Providestemperaturedistributionto BEMconductionsolver

afteranumberof iterations.
4. ReceivesfluxboundaryconditionfromtheBEMasinputfor

nextsetof iterations.

• BEMconductionsolver:

1. ReceivestemperaturedistributionfromFVMsolver.
2. Solvessteady-stateconductionproblem.
3. ProvidesfluxdistributiontoFVMsolver.

The transferof heatflux from the BEM to the FVM solveris accomplishedafterunder-
relaxation.

q fl BEar (1 _, BZat= qold + -- P)%_w (22)

with fl taken as 0.2 in all reported calculations. The choice of the relaxation parameter is through

trial and error. In certain cases, it has been our experience that a choice of larger relaxation

parameter can lead to non-convergent solutions[35]. The process is continued until the NS solver

converges and wall temperatures and heat fluxes converge, that is until Eq. (23) is satisfied

within a set tolerance

[1T I -T_II < er (23)

IIq I -qs 11< cq

where cT and cq are taken as 0.001.

It should be noted that alternatively, the flux may be specified as a boundary condition for the

BEM code leading to a flux forward temperature back (FFTB) approach. However, when a

fully conjugate solution is undertaken, this would amount to specifying second kind boundary

conditions completely around the surface of a domain governed by an elliptic equation,

resulting in a non-unique solution. Thus, the TFFB algorithm avoids such a situation. A blend

of the TFFB and FFTB may resolve this problem and is the subject of ongoing work. Results

of these studies will be reported elsewhere.

3.4 Interpolation Between BEM and FVM Grids

A major issue in information transfer between CFD and BEM is the difference in the levels of

discretization between the two meshes employed in a typical CHT simulation. Accurate



resolutionof theboundarylayerrequiresa FVMsurfacegridwhichis muchtoofine to be
useddirectlyin theBEM.A muchcoarsersurfacegridis typicallygeneratedfor theBEM
solutionof theconductionproblem.Thedisparityin meshesis illustratedfor thetestsection
consideredin thispaper,seeFig. (2): theFVM grid in Fig.(3) usedfor theexternalflow
solutionis obviouslymuchfinerthanthecoarserBEMgrid in Fig.(4) whichwasusedfor
internalconductionanalysis.The disparitybetweenthe two grids requiresa general
interpolationof thesurfacetemperatureandheatflux betweenthetwosolversasit is not
possiblein generalto isolatea singleBEMnodesandidentifya setof nearestFVMnodes.
Indeedin certainregionswheretheCFDmeshis very fine,a BEM nodecanreadilybe
surroundedbytensormoreFVMnodes.

Radialbasisfunction(RBF)interpolation[19,20]cannaturallybe adoptedfor thispurpose.
ConsiderFig.(5),herethelocationof aBEMnodeis identifiedontheright-hand-sidebyastar-
like symbol.Letthepositionof theBEMnodeof interestbedenotedby7,then,thevalueof the
temperatureatthatlocationis interpolatedusingRBF'swithpoleslocatedat theposition_i of
eachof theFVMsurfacenodeslyingwithinasphereof radius/_azcenteredabout

NPS

T(_) = _ o_ifi (7-) (24)
i=t

where, NPS is the total number of FVM nodes contained within the sphere, r = 17- _i[

denotes the Euclidean distance, and fi(r)are radial basis functions. Here, we use the standard

conic function

f(r) = 1 + r (25)

Collocating Eq. (24) at all i = 1, 2...NPS nodes of the finite volume mesh surrounding the

BEM node of interest, the expansion coefficients are found by solving the equation

T = _ _ (26)

where T is the vector of FVM computed wall temperatures, and the interpolant matrix F is

known from RBF theory to be well conditioned and readily inverted. In all calculations, the

maximum radius R,_ax of the sphere is set to 5% of the maximum distance within the solid

region. This limit may be adjusted to suit the problem at hand.

4 Numerical Results

We now report on a preliminary simulation used to verify our algorithm. A 3-D model is made of

a 2-D configuration used in an experiment set up to simulate heat transfer conditions in a cooled

turbine blade tip and investigate the importance of conjugacy, see Fig. 2. Heated air at 319.5K

enters horizontally at the left end of the channel, flows over the simulated tip gap, and out the

bottom of the channel. The block is made of stainless-steel (k = 14.9W/mK,



p = 8.03xlO31_g/m 3, c = 502.48 J/kgK) and is cooled by a laminar flow of water at 286K.

The film coefficient in the cooling channels is caIcutated as 536 W/m2t(. In this simulation,

convective boundary conditions are used to model flow in the channel as a full external flow and

internal flow CHT solution was not carried out, due to the fact that the CFD code is specialized

for turbomachinery applications and can only model air as a working fluid. All wails not

exposed to the flow are adiabatic. The height of inlet channel is 0.02m, the height of the outlet

channel is 0.0025m, width of passage between block and wall is 0.005m, the length of inlet

channel up to block is 0.40315m, the length of outlet channel measured from block to exit is

0.40615m. Total pressure at inlet is atmospheric and the back pressure at exit is 0.92 x inlet total

pressure (i.e., p/P_inlet = 0.92). A 3-D model was constructed to model the centerline of the

block. Four finite volume cells were used to modeI the width and the surface grid at the block are

shown in Figs. 3 and 4. The FVM mesh uses 1104 surface ceils, with a total of 200,000 finite

volume cells. The BEM surface grid used 946 uniformly spaced boundary elements. The CHT

solution was run to reduce residuals in density to 1.0xl0 -6 and in energy to 1.0xl0 -9. Results for

the CHT predicted block surface temperature, flow passage temperature and Mach number are

displayed in Figs. 6 and 7. The Mach number in center of inlet channel is approximately 0.06,

and typical Mach number in outlet channeI is approximately 0.068 (variation over the height of

the channel due to the flow over the block).

5 Conclusions

A combined FVM/J3EM method has been developed to solve the conjugate problem in CHT

analysis. As a boundary only grid is used by the BEM, the computational time for the heat

conduction analysis is insignificant compared to the time used for the NS analysis. The proposed

method produces realistic results without using arbitrary assumptions for the thermal condition at

the conductor surface. In practice, turbomachinery components such as modem cooled turbine

blades which often contain upwards of five hundred film cooling holes and intricate internal

serpentine cooling passages with complex convective enhancement configurations such as

turbulating trip strips, pose a real computational challenge to BEM modeling, k is proposed to

extend the current work by implementing either fast multipole-accelerated BEM or adoption of

iterative block solvers for the BEM in order to address large-scale problem.
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Figure 2: Cross-section of experiment set-up which is also used in numerical simulation.

Upstream channel extends 10 hydraulic diameters upstream of the block.
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Figure 3: Finite Volume surface mesh: cell centered finite volumes with four cells in

z-direction and total of 1104 surface cells.



Figure4: SurfaceBEMdiscretizationfor theblockwith946equallyspacedbilinear
elementsdistributedoverthesurfaceof theblock.
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Figure5: Transferof nodalvaluesfromFVMandBEM(andback)independentsurface
meshesisperformedwithacompactlysupportedradial-basis-function
interpolation.
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APPENDIX

3DBEM FORMULATIONFORSTEADY-STATEHEAT CONDUCTION

The point of depa_ure is the BIE for the steady state heat conduction equation,

C(_) T(_)+ jsr(X)q* (x,  )dS(z)=jsq(z)T* (z, _)dS(z) (1.1)

where x denotes the 3-D coordinates, S(x) is the surface bounding the domain of interest, _ is

the source point, x is the field point, q(x) = - k OT/On is the heat flux, T*(x, _) is the so-

called fundamental solution, and q*(x, _) is its normal derivative with O/On denoting the normal

derivative with respect to the outward-drawn normal. The fundamental solution (or Green free

space solution) is the response of the adjoint governing differential operator at any field point x

due to a perturbation of a Dirac delta function acting at the source point _. In our case, since the

steady state heat conduction equation is self-adjoint, we have

k V2T* (x, _) = - 6(x, () (1.2)

Solution to this equation can be found by several means which yield

1

T*(x,_) - 27rklnr(x,_) in 2-D (1.3)

1
-- in 3-D

where r(x, _) = Ix - _1 is the Euclidean distance from the source point _ to the field point x. The

free term C(_) can be shown analytically to be

s OT*( = - k ' ds
(x) -0_

(A.4)

Moreover, introducing the definition of the fundamental solution in the above, it can be readily

be determined that C(_) is the internal angle (in degrees in 2-D and in steradians in 3-D)

subtended at source point divided by 27r in 2-D and by 4_- in 3-D when the source point _ is on

the boundary and takes on a value of one when the source point _ is at the interior.

Consequently, the free term takes on values 1 _> C(_) > 0.



In theBEM, the BIE is discretized using two levels of discretization:

1. the surface S is discretized into a series of e = 1,2...N elements. This is

traditionallyaccomplished using polynomial interpolation, bilinear and quadratic

being the most common. In general,

N

S = _AS _
e=i

and on each surface element AS+(x) the geometry is discretized using local shape

functions N_ (r/, () in terms a homogenous coordinates (r/, () which each take on values

between [ - 1, 1] as

NGE

= F_,
k=l

NGE

v°(,7,():
k=l

NGE

k=l

(A.5)

Here, (xk, Yk, zk) denote the location of the k = 1,2...NGE boundary nodes used

to define the element geometry.

(A.6)

. the distribution of the temperature and heat flux is modeled on the surface. This is

usually accomplished using polynomial interpoaltion as well. Common

discretizations include: constant (where the mean value of T and q) are taken on an

element surface, blinear, or bi-quadratic. In general,

NE

T_(rl,() = ZN;(rl,()T;
j=l

NE

qe(rh¢ ) = ENje(rh ¢)q;
j=l

It is noted that the order of discretization of the temperature and heat flux need not

be the same as that used for the geometry, leading to sub-parametric (lower order

than that used for the geometry), iso-parametric (lower order than that used

for the geometry), and super-parametric (lower order than that used for the

geometry) discretizations. Moreover, the temperature and heat flux are

(A.7)



discretizedusingj = 1, 2, ...NE discrete nodal values whose location within the

element e can be chosen to

(a) coincide with the location of the geometric nodes: continuous elements.

(b) be located offset from the geometric nodes: discontinuous elements.

Two types of discontinuous boundary elements are available in the BEM code used in the

project: constant elements (sub-parameteric) and bilinear isoparametric. All CHT calculations are

reported using bi-linear discontinuous elements.

Constant Element

In the constant element, which is a sub-parametric element, the field variables, T and q, are

modeled as constant across each element while the geometry is represented locally as bi-linear

planes. Figure A.1 below shows a typical constant boundary element along with its transformed

representation in the local 7-/- _ coordinate system.

1

-1

Figure A. 1. Bi-Iinear subparametric boundary element.

Notice that the geometric nodal locations of the element are ordered counterclockwise such that

the normal vector always points outwards from the domain of the problem. The global coordinate

system (z, 9, z) is transformed into a local coordinate system (r/, _) using the following bi-linear

shape functions relationships as,



4

N _

k=l

4

t e

k=l

4

N ez_(,_,_) = __, _(77,¢)_
k=l

(A.8)

where the four bi-Iinear shape functions are defined as follows,

N((r/, ¢) = 1(1 - r/)(1- _)

N2_(r/, ¢) = ,_(1 + rl)(1-_)

Nab(r/, ¢)= I(1 + r/)(1 +_)

1

N4_(r/, ¢) = _(1 - 77)(1 +_)

(A.9)

The temperature and heat flux are modeled as constant with the node located at the geometric

center of the boundary element, thus

Te(rh (-) = Tf and qe(r h ¢) = q_ (A.10)

Clearly, the temperature and heat flux are discontinuous at the element interfaces. Thus, a

constant element is termed discontinuous.

Introducing the above discretization in the BIE in Eq. (A.1), noting that NPE = 1, and

collocating the discretized BIE at each of the boundary nodes _i there results

N N

C(_i) T(_i) + ___HijTj = ___Gijqa (A.1 1)
j=l j=l

where the influence coefficients Hij and G'ij are defined as

Hu = J j:,sq*(x,_ddS (A.12)

]

These are evaluated numerically using Gauss-Legendre quadratures with an adaptive scheme to

be discussed shortly. Although very simple in implementation, use of the the above constant

element formulation does not lead to satistactory results in many cases.



Bi-Linear Isoparametric Discontinuous Elements

In this type of boundary element which is used in all CHT calculations, the field variables T and

q are modeled with discontinuous bi-linear shape functions across each element while the

geometry is represented locally as continuous bi-linear surfaces. Figure A.2 below shows a

typicaI bi-Iinear subparametric boundary element along with its transformed representation in the

local coordinate system.
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Figure A.2. Bi-linear isoparameteric discontinuous boundary element.

1 7/

Again, the global coordinate system (x, y, z) is transformed into a local coordinate system (% O

where the four bi-linear shape functions defined in Eq. (A.9). The field variables, T and q, are

modeled to vary bi-linearly across the boundary element through the use of four discontinuous

shape functions with nodes located at an off-set position of 12.5% from the edges of the element.

The field variables and shape functions are described as follows:

4

T_(r/,() = X_M;(r/, () T; (A.13)
j=l

4

= () q;
j=i

with the bilinear shape functions Mf defined as,



(1.14)

Introducing tile above discretization in the BYE in Eq. (A.1), and collocating the discretized BYE

at each of the boundary nodes _i there results

N NPE N NPE

e=l j=l j=lj=i

where the influence coefficients H i_and G i_ are defined as

These influence coefficients are again evaluated numerically via quadratures.

(A.15)

(1.16)

Numerical Evaluation of the Influence Coefficients

The process is illustrated by considering constant elements. Introducing the definition of bilinear

representation of the geometry Eq. (A.8) into the constant element influence coefficient

definition, Eq. (A. 12), the influence coefficient integrals are explicitly,

Gii = q*(x(rh<),_i)JJj(rh¢)ldrld_ (1.17)
1 1

2/1Hij = T*(x(r;, ¢), ({)lJ_(rl, ¢)1drld¢
1 l

The Jacobian of the transformation over the j-th element, [Ji(r;, ¢)1 is

_) = v/9,_,_9_- 9_;_ (1.18)Jj(_,

where 9,m, 9<¢, and 9 T;<are the components of the metric tensor defined as,



(A.19)

The metrics o,,°x o¢,°z _o,, ovo¢,o,,°_ and o_ are readily found by differentiation of x_(rl, ¢),

y¢(r;, (), and z¢(r/, () in Eq. (1.8). Introducing the metrics into the Jacobian and simplifying

leads to,

Jj(r], () = (A.20)

i _ Oz Oz Ov 2 Oz ax Ox Oz _ O_Oy OuOx

In the expression for q*(z, {i)there arises the need to evaluate the outward-drawn normal _, as

by definition

OT*(x, _i) _ Vq*(x, {i)" _ (1.21)
q*(x, _i)- On

The components of the unit vector on each elements can be easily computed using,

Oy Oz

n,j = k,O_O(
Ox Oy

Oz Oy

Ox Oz

o, a¢ ) /Ji ,,¢)

Oy Ox

o, a< ) / J_(v,¢)

(A.22)

The numerical integration process necessary to obtain the influence coefficients in Eq. (A. 17) is

performed by double Gaussian quadratures (Gauss-Legendre specifically) simultaneously along

the two local axis r/and (, leading to the following form,

NG NG

Gij = Z ___ W'_WrnEJ(rlnm' ¢nm' _i)lJj(rlnm' _nm)[ (1.23)
n----Im----I

NG NG

n=l m=l



where NG is the number of Gaussian points or order of integration employed, r/,,_ and _,_,,, are

the locations of the Gaussian quadrature points (zeroes of the appropriate Legendre polynomials),

and !/V,_and W,_ are the quadrature weights [1,2].

The number of Gaussian points employed can be addapted to every integral depending of the

variability of the integrand. The influence coefficients G are inversly proportional to the

Euclidean distance between the field or integration point x and the collocation point _i, and the

influence factors H are inversly proportional to the square of the Euclidean distance between the

field or integration point and the collocation point _i. Therefore, as the collocation point _i is

positioned closer to the integration element, the variability of the integrand increases requiring an

increase in the number of Gaussian points, NG, for the integral approximation to provide a

similar level of accuracy. Hence, a simple distance rule can be heuristically employed to change

the number of Gaussian points depending on how far the collocation point is to the integration

element.

However, simply increasing the number of Gaussian integration points is in some cases not

enough to obtain an accurate approximation to the integral. This is precisly the case when the

collocation point _i is extremely close to the integration element. In such cases a

subsegmentation of the element is required and can be performed in a similar fashion as to the

increase of Gaussian points, that is, the closer the collocation point is to the element, the more

subdivisions are made to the element with a fixed number of Gaussian points for each

subelement.

The particular case in which the collocation point _i is located over the integration element must

be treated with caution. For this case the integrand becomes singular lacking an accurate integral

approximation through a regular Gaussian rule. Even though the integral for the influence factor

Hii is strongly singular because its integrand is inversely proportional to the distance squared

(1/r2), this integral need not be computed directly but instead using the equipotential relation by

suming the off-diagonal terms[3-5], that is

N

Hii = - _ Hij (A.24)

j=i,j¢i

The integral for the influence coefficient Gii is however weakly singular because its integrand is

inversely proportional to the distance (l/r), therefore the singularity may be avoided through an

additional transformation of the local coordinate system. Figure A.3 shows the primary



subsegmentationof thesingularelement.Twelve(12)quadrilateralsubdivisionshavebeenmade
to the singular subparametricboundaryelement in Fig. A.3 and ten (10) quadrilateral
subdivisionsto the singularisoparametricboundaryelementin Fig. A.4. The shadedarea(0)
correspondsto the singularportionof theelementthatis goingto be transformedinto a local
polarcoordinatesystemasshowninFig. A.5.
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Figure A.3. Subsegmentation of singular bi-linear subparametric boundary element.
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Figure A.4. Sub-segmentation of singular bi-linear isoparametric boundary element.
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Figure A.5. Polar coordinate transformation of singular boundary element.

The shaded area of the singular element is fit into a new local system (q, _) and subdivided into

four triangular subelements. Each

coordinate system (p, 0) where,

of the subelements is transformed into a new local polar

q = p cos 0 (A.25)

= psinO

therefore, the factor G,° which corresponds to the integral over the shaded area (0) is comprised

of four integrals (G,m , Gi?, Gi?, and Giio4) as,

_r 1

Gi°_ = [_ [_-_'°T*(x(q, _),_i)]J (r?, _)[pdpdO (A.26)
J-¼JO

1

G_°_= _ Z*(x(,,¢D,_dlJ(,,_DlpdpdO
J0

c°2 = _]_ [_m* (x(r_,¢), &)ld (v, ¢)lp dp dO>o



Notice that the transformation of the differential area introduced the variable p to the integrand

which relaxes the singularity of the fundamental solution T*(x07 , ¢),_). In addition, an extra

transformation is necessary to fit the limits of integration into the ( - 1,1) range such that,

s+l 7r
pl- 2cosO ' 01=-_t

S + 1
02 = ¼(t + 2)P2 -- 2sin O '

S + 1
03 = 4 (t + 4)P3 - 2cos 0 '

8 + 1
0 4 = _ (t _- 6)

P4 -- 2sin O '

(A.27)

where the sub-indeces of the coordinates p and 0 correspond to the transformation for the

particular integral term Gi°l, Gi°2, G °3 and o4ii , Gii. Therefore, the influence coefficient subintegrals

are transformed into,

1 1

j_j dsdt (1.28)Cio_ -_ T*(x(w,¢),_i)lJ@,<)[8cosO 1
1 -1

1 1

Gi°2= T (x(rh¢),_i)[J(rh<)lSsin02
1 -1

1 1

Gi°3 = Z*(:c(r_,¢),_i)lJ(r],¢)lScosO 3
1 -1

1 1

G°4 = r*(x(n,¢),({)lJ(n,¢)l SsinO 4
1 -1

which can be solved numerically by the use of Gaussian integration and through the

corresponding transformations detailed in the previous relations.

When dealing with isorparametric bi-linear elements, the procesure of evalaution of the element

influence coefficients H iejand G iej is the same, except that the shape functions _lje(r],_) appear

multiplying each of the integrands of the influence coefficients, see Eq. (A.16). That is for

instance,

1 1

G sj_= A _J- 1q'(z(_7, C),_i)AC(_7,C)IJ_O7, C)I@dC

NG NG

Giej = E EI'VnWrnqJ (rlnm, Cnm,_i)_[3 e(rlnm, ¢nm)lJe(rlnm, Cnm)l
n=l m=l

(A.29)

where the subscript e is used to denote that the Jacobian is evaluated on an element basis, as in

this case j = 1,2...NPE = 4. Moreover, the sub-segmentation described for the G i_ is



performednon-symmetricallydependingon the locationof the collocationpoint _i on the
boundaryelement"e",seeFig.(A.2).
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